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Context

Graphs	are	ubiquitous	and	can	model	complex	relationships
Graphs

Social	network Web
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Context
Graph clustering

Ø Group	vertices into clusters;

Ø e.g:	detect the	strong connected sub-graphs;

Ø Obtimization problem:

o Maximze the	distance	between sub-graphs;

o Minimize the	distance	between the	vertices in	the	same sub-

graphe.
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Applications

Ø Digital	marketing:	differ intelligenlty the	messages	or	offers;

Ø Bio-informatic:	identify	the	target	proteins	or	the	functions	of	the	protein	

groups;

Ø Social	network:	community detection,	user	profiling;

Ø Scientific	Research :	identify the	scientific community .
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challenges

Ø High	volume	of	the	graph:	Graph	storage;

Ø Scalability:	Graph	processing;

Ø Velocity:	 Fast	updating	of	graph.

1.49 trillion user/ month

500 Million Tweets/ dy
320 Million user/month
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AnyTimeSCAN

Scalable Interactive Dynamic Graph Clustering on Multicore CPUs
SON	et.	al.,	IEEE	Trans.	KDE	2018

1. Structural	clustering:	SCAN;

2. Interactive	clustering	in	real	time:	intermediate results;

3. Parallel processing on	multi-core and	shared memory;

4. Dynamic graph	clustering.

Contributions	
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SCAN

Scan:	a	structural	clustering	algorithm	for	networks	
Xu et.	al.,KDD’07.

Ø Based	on	common	neighbors	between	the	vertices;

Ø Uses	the	structural	similarity;

Ø Identifies	Clusters,	Outliers	and	Hubs;

Outliers

Hub

Clusters
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SCAN

The	main	steps	of	the	basis	SCAN	algorithm

1. Define the	neighbors	of	each	vertex;	

2. Calculate	the	structural	similarity	 in	the	graph	G;

3. Define the	core vertices;

4. Build the	clusters;

5. Define the	Hub and	outliers vertices.
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SCAN

2. Structural	similarity of	the	graph	G 20
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List	of	neighbors	for	each	vertex

1. Define the	neighbors	of	each	vertex;	
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SCAN

3. Cores detection
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Uses	a	threshold ε to	determine a	dense	connections:	

A	core vertex	shares	structural	similiarity of	at	least	ε
with	at	least	μ neighbors:

ε =0.7
µ=3
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SCAN

4. Build the	Clusters	

20

1

3
5

4

6

7

8

910

11

0.75
0.67

0.630.82

0.75

0.82

0.82

0.67

0.75

0.600.75

0.52
0.58

0.75 0.75

1.00
0.87 O.87

Direct	structure	reachability:

IF		vertex	is	in	ε–Neighborhood	of	a	core vertex,

they	should	be	IN the	same cluster

ε =0.7
µ=3
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SCAN

5. Define the	Hub and	outliers vertices
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Hub:

Is	an	isolated	vertex	that’s	neighbors	

belongingof	two	or	more	different	clusters.

Outlier:

Is	an	isolated	vertex	that	do	not	belong	to	any	

cluster.

Outlier

Hub

ε =0.7
µ=3
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AnyTimeSCANmethod:	an	extension	of	SCAN

Ø AnyTimeSCAN:	extension	of	the	SCAN;

Ø Gives	the	same	result	as	SCAN;	

Ø (+)	Reduce	the	calculation	operation	

of	the	structural	similarity

a,	b	and	C:	Core

i and	J:	Noise
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AnyTimeSCAN
The	steps	of	the	AnyTime SCAN	algorithm

1. Summarization:	decomposes the	set	of	vetrices intoequals blocks

2. Combines	the	sub-clusters;

3. Determines the	borders.

Input:	Graph	G Blocks Local	clustering Merge the	sub-
clusters
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AnyTimeSCAN
AnyTimeSCAN:	Summarizationstep

The	state	transition	schema	for	vertices

Ø At	t	=0,	all	vertices	V are	marked	as	
untouched	vertices.

Ø For	each	vertex	v in	a	bloc	b,	we	determine	
its	state	according	to	its	neighbors.
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AnyTimeSCAN
AnyTimeSCAN:	Parallel processing

CPU

CPU

CPU

CPU

CPU

CPU

CPUCPU

CPUCPU

Shared memory

Ø Implementation	based	on	OpenMPAPI

Ø Degree	of	parallelism	according	to	the	number	of	

blocks	or	the	parameter	α	>>	1

Ø Shared memory:

§ Group	all	the	blocks;

§ Keep	the	links	between	the	sub-graphs

§ Keep the	shared data.

Blocs	of	the	Graph	G

Multi-Coresmachine
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AnyTimeSCAN

DanySCAN:	Dynamic Clustering

Ø Incremental approach;

Ø Each	update	in	the	graph,	a	set	of	vertices	

and	edges	will	be	affected	by	this	change;
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AnyTimeSCAN
Experimental study

Dataset:

Ø 2	*	3.1	GHz	Intel	Xeon	CPUs	with	64	GB	local	RAM

Ø OpenMP3.2

Environment: 
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AnyTimeSCAN
AnyTimeSCAN:	experimental results

Ø Give an	intermediate	results,	which	has	not	

been	guaranteed	by	the	others	approaches;

Ø Runtimes	comparison	with	others	

approaches.
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AnyTimeSCAN

Comparison	in	terms	of	the		number	of	structural	similarity	operation

Reduce	the	structural		similarity	
operation between	a	pairs	of	
vertices	 in	the	graph.

AnyTimeSCAN:	experimental results
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DanySCAN

Performance	of	danySCANaccording	the	number	of	updates	for	different datasets

DanySCAN:	experimental results
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Conclusion

Ø A	new	paradigm	to	reduce	the	similarity	calculation	operation;

Ø An	incremental	approach	for	dynamic	graphs	clustering	;

Ø Interactive	model	to	provide	an	intermediate	results	during	the	execution	of	

the	algorithm;

Ø A	parallel	approach	based	on	shared	memory	architecture;

Ø A	strong experimental study;		


