

UNIVERSITÉ De lorraine

Son et. al., IEEE Trans.KDE 2018

Wissem Inoubli

FST, LIPAH

Context

Graphs

Graphs are ubiquitous and can model complex relationships

Differentiation 77 Costilinis brockers ß TLA problement and the second STATISTICS. Nitroje si kecom COLUMN STREET S powered by TouchGraph ****** Web

Social network

Context

Graph clustering

- Group vertices into clusters;
 - e.g: detect the strong connected sub-graphs;
- > Obtimization problem:
 - Maximze the distance between sub-graphs;
 - Minimize the distance between the vertices in the same subgraphe.

- > **Digital marketing**: differ intelligenlty the messages or offers;
- Bio-informatic: identify the target proteins or the functions of the protein groups;
- Social network: community detection, user profiling;
- Scientific Research : identify the scientific community .

- High volume of the graph: Graph storage;
- Scalability: Graph processing;
- > Velocity: Fast updating of graph.

1.49 trillion user/ month

500 Million Tweets/ dy 320 Million user/month

Scalable Interactive Dynamic Graph Clustering on Multicore CPUs

SON et. al., IEEE Trans. KDE 2018

Contributions

- 1. Structural clustering: SCAN;
- 2. Interactive clustering in real time: intermediate results;
- 3. Parallel processing on multi-core and shared memory;
- 4. Dynamic graph clustering.

Scan: a structural clustering algorithm for networks

Xu et. al.,KDD'07.

- Based on common neighbors between the vertices;
- Uses the structural similarity;
- Identifies Clusters, Outliers and Hubs;

The main steps of the basis SCAN algorithm

- 1. Define the neighbors of each vertex;
- 2. Calculate the *structural similarity* in the graph **G**;
- 3. Define the **core** vertices;
- 4. Build the **clusters;**
- 5. Define the **Hub** and **outliers** vertices.

1. Define the neighbors of each vertex;

List of neighbors for each vertex

 $\Gamma(v) = \{ w \in V \mid (v,w) \in E \} \cup \{ v \}$

2. Structural similarity of the graph **G**

$$\sigma(v,w) = \frac{|\Gamma(v) \cap \Gamma(w)|}{\sqrt{|\Gamma(v)||\Gamma(w)|}}$$

3. Cores detection

Uses a threshold **E** to determine a dense connections:

 $N_{\varepsilon}(v) = \{ w \in \Gamma(v) \mid \sigma(v, w) \ge \varepsilon \}$

A core vertex shares structural similarity of at least ϵ with at least μ neighbors:

 $CORE_{\varepsilon,\mu}(v) \Leftrightarrow |N_{\varepsilon}(v)| \geq \mu$

ε =0.7 μ=3

- 4. Build the **Clusters**
 - **Direct structure reachability:**
 - IF vertex is in **ε-Neighborhood** of a **core** vertex,
 - they should be IN the same cluster

 $DirREACH_{\varepsilon,\mu}(v,w) \Leftrightarrow CORE_{\varepsilon,\mu}(v) \land w \in N_{\varepsilon}(v)$

5. Define the **Hub** and **outliers** vertices

Hub:

Is an *isolated vertex* that's neighbors

belonging of two or more different clusters.

Outlier:

Is an *isolated vertex* that *do not belong* to any cluster.

AnyTimeSCAN method: an extension of SCAN

> AnyTimeSCAN: extension of the SCAN;

Gives the same result as SCAN;

(+) Reduce the calculation operation
of the structural similarity

The steps of the AnyTime SCAN algorithm

- 1. Summarization: decomposes the set of vetrices into equals blocks
- 2. Combines the sub-clusters;
- 3. Determines the borders.

14

AnyTimeSCAN: Summarization step

- At t =0, all vertices V are marked as untouched vertices.
- ➢ For each vertex v in a bloc b, we determine its state according to its neighbors.

The state transition schema for vertices

AnyTimeSCAN: Parallel processing

- Implementation based on OpenMP API
- > Degree of parallelism according to the number of blocks or the parameter $\alpha >> 1$
- Shared memory:

20/06/2018

- Group all the blocks;
- Keep the links between the sub-graphs
- Keep the shared data.

Blocs of the Graph G

17 (15

Dynamic graph clustering

DanySCAN: Dynamic Clustering

- Incremental approach;
- Each update in the graph, a set of vertices and edges will be affected by this change;

Experimental study

Dataset:

Graph	Vertices	Edges	\overline{d}	с
Ego-Gplus (GR01)	107,614	13,673,453	127.06	0.4901
Soc-LiveJournal1 (GR02)	4,847,571	68,993,773	14.23	0.2742
Soc-Poket (GR03)	1,632,803	30,622,564	18.75	0.1094
Com-Orkut (GR04)	3,072,441	117,185,083	38.14	0.1666
Kron_g500-logn21 (GR05)	2,097,152	182,082,942	86.82	0.1649
Twitter (GR06)	41,652,230	1,369,000,750	32.8	0.0730

Environment:

> 2 * 3.1 GHz Intel Xeon CPUs with 64 GB local RAM

> OpenMP 3.2

AnyTimeSCAN: experimental results

- Give an intermediate results, which has not been guaranteed by the others approaches;
- Runtimes comparison with others approaches.

AnyTimeSCAN: experimental results

Reduce the structural similarity operation between a pairs of vertices in the graph.

Comparison in terms of the number of structural similarity operation

DanySCAN

DanySCAN: experimental results

Performance of danySCAN according the number of updates for different datasets

- > A new paradigm to reduce the similarity calculation operation;
- > An incremental approach for dynamic graphs clustering ;
- Interactive model to provide an intermediate results during the execution of the algorithm;
- > A parallel approach based on shared memory architecture;
- A strong experimental study;