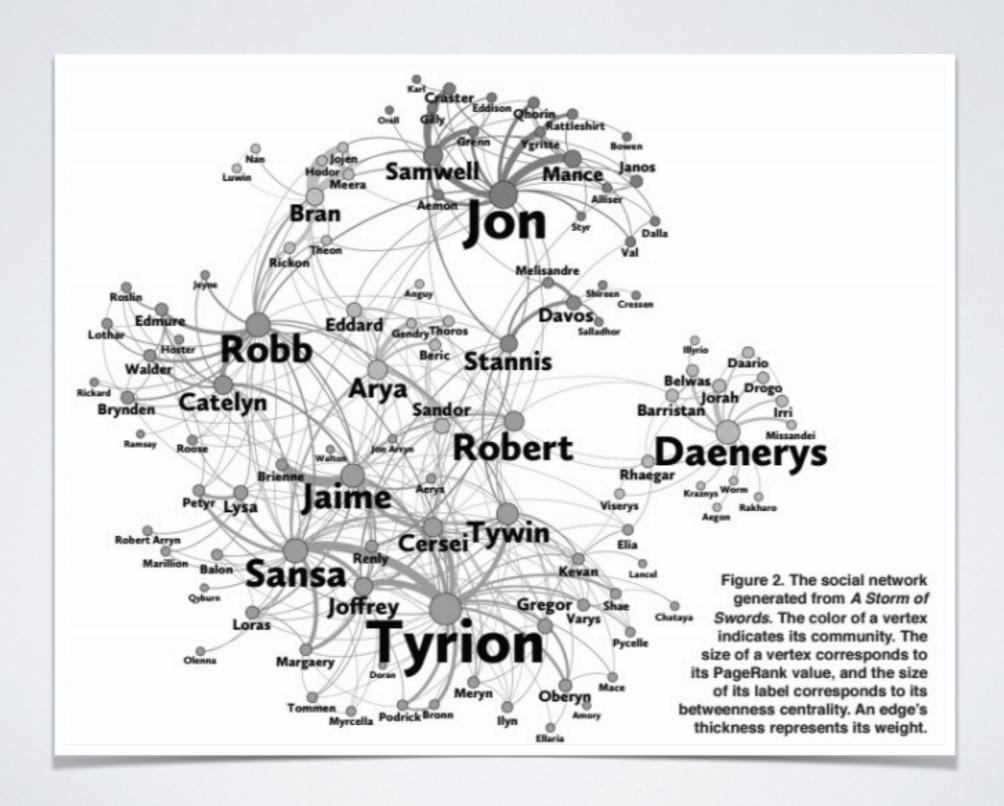
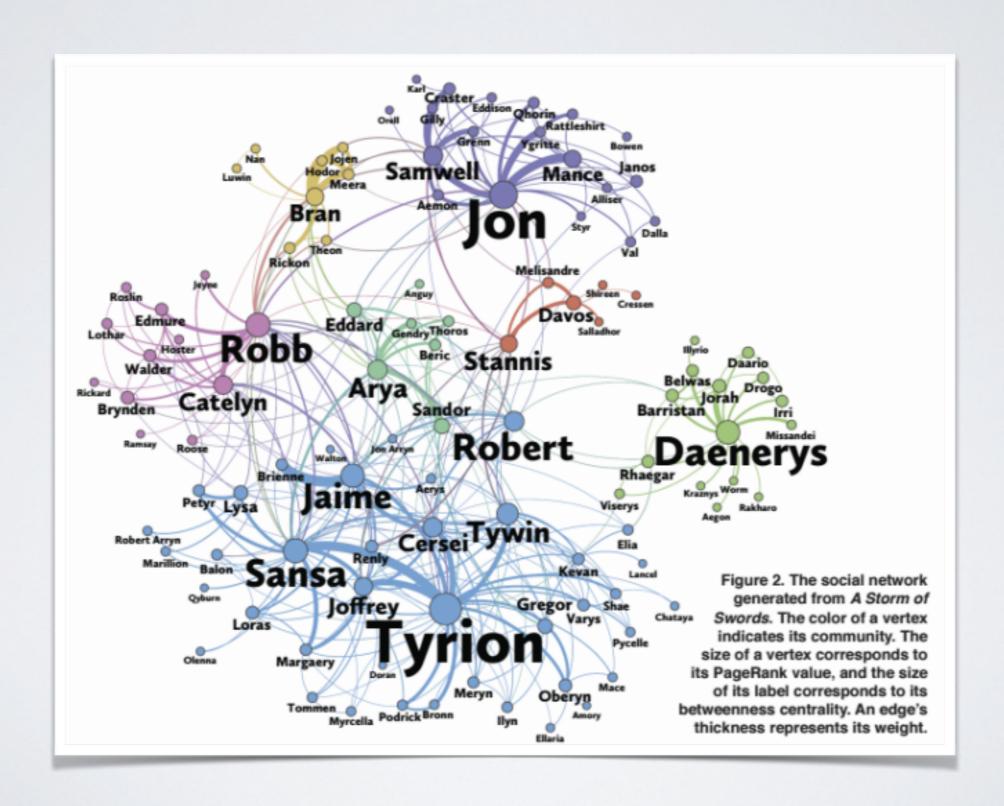


DYNAMIC COMMUNITY DETECTION

Cazabet Rémy

- · Community detection or "graph clustering"
 - No formal definition
 - Two informal definitions:
 - groups of densely connected nodes, weakly connected to the rest of the network
 - groups of nodes that "make sense" in real networks
 - Too limited : Stochastic Block Models ?





- Numerous applications:
 - · groups of friends/colleagues in ego-networks
 - structure of an organisation (company, laboratory...)
 - topics in scientific networks
 - · groups of interest in social medias (politics, opinions, etc.)
 - · User de-anonymization

•

- Most real world networks evolve
 - Nodes can appear/disappear
 - Edges can appear/disappear
 - Nature of relations can change
- How to represent those changes?

Semantic level

Relations

Long term

-Friend -Colleague -Family relation

-...

Short term?

-Collaborators in the same project
-Same team in a game
-Attendees of the same meeting

Interactions

Instantaneous

-e-mail

-Text message

-Co-authoring

. .

With duration

-Phone call

-Discussion in real life

-Participate in a same meeting

-...

Semantic level

Relations

Interactions

Representation level

Interval graphs

DN=(V,E,T,DV)
DV:V×T×T
E:V×V×T×T

Graph series

DN={G1,G2...Gn} Gi=(V,E) E:VxV

Link Streams

DN=(V,E,T) $E:V\times V\times T$

Semantic level

Representation level

Relations

Interactions

Snapshot

Interval graphs

DV:VxTxT

E:VxVxTxT

DN=(V,E,T,DV)

Graph series

Aggregation

 $DN = \{GI, G2...Gn\}$ Gi=(V,E)E:VxV

Link Streams

DN=(V,E,T)E:V×V×T

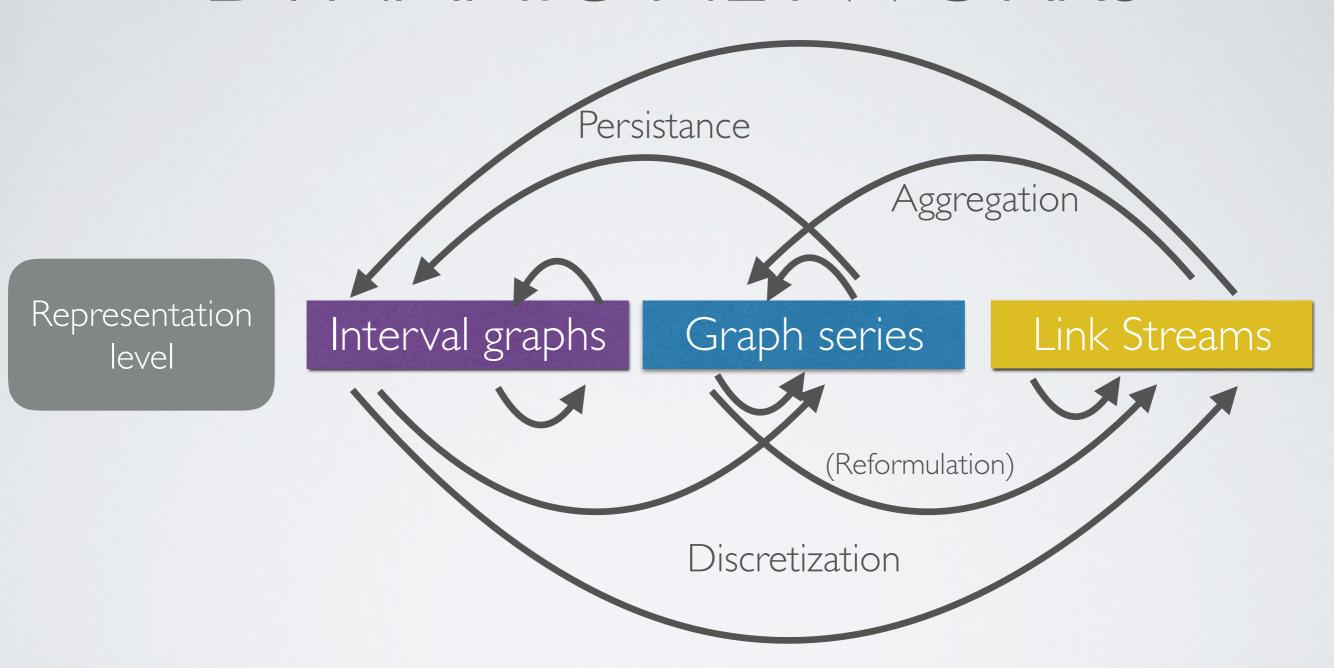
Semantic Relations Interactions level Snapshot Aggregation Representation Link Streams Interval graphs Graph series level Temporal edge Sequence of Interval list File format graphs list

-Modification lists

-List of intervals

Ifile by graphI file withall graphs

-List of edges with timestamps

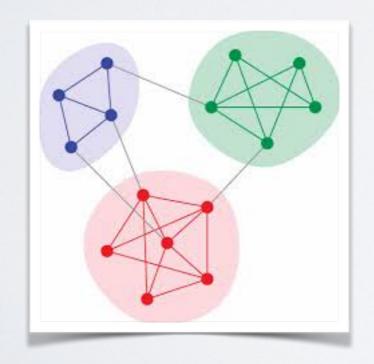


DYNAMIC COMMUNITY DETECTION

Source : Dynamic community detection: a Survey [Rossetti, Cazabet, 2018]

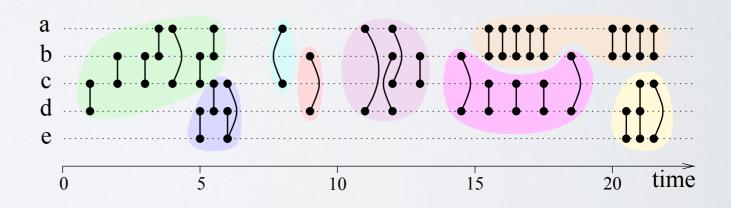
Static networks

Sets of nodes



Dynamic Networks

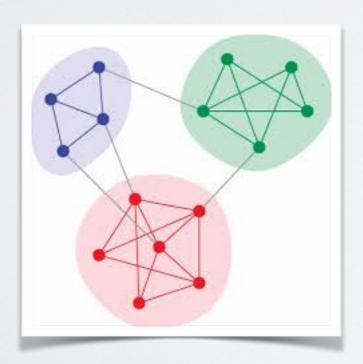
Sets of periods of nodes



[Viard 2016]

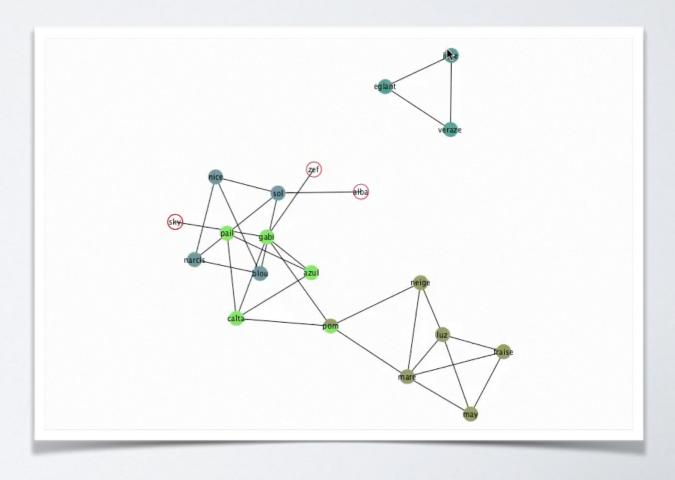
Static networks

Sets of nodes

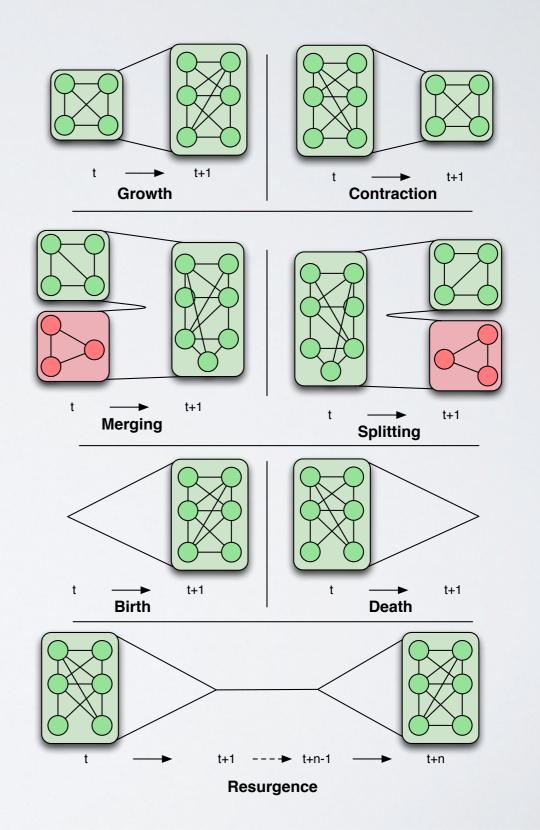


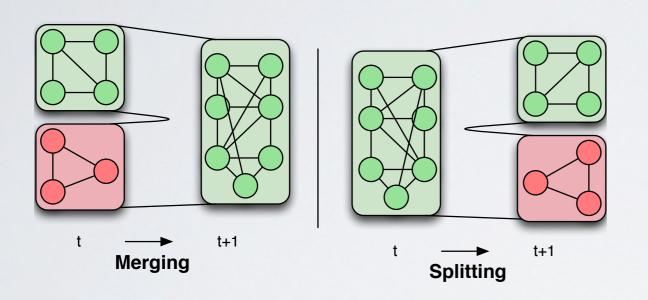
Dynamic Networks

Sets of periods of nodes



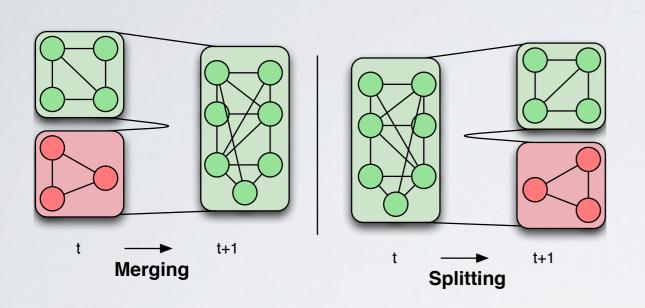
Community events (or operations)





Which one persists?
-Oldest?
-Most similar?
-Larger?

Community events (or operations)



Which one persists?
-Oldest?
-Most similar?
-Larger?

Ship of Theseus paradox

Sequence of small modification =>Complete change

Over 40 methods published, but barely any systematic comparison (nor re-use)

(A) Instant Optimal

(A1) Iterative, Similarity Based

(A2) Iterative, Core-Node Based

(A3) Multi-Step Matching

Clusters at t depends only on the current state
of the network
Clusters are non-temporally smoothed
(Communities labels, however, can be
smoothed)

(B) Temporal Trade-Off

(B1) Update by Global Optimization

(B2) Informed CD by Multi-Objective Optimization

(B3) Update by Set of Rules

(B4) Informed CD by Network Smoothing

Clusters at t depends on current and past
states of the network
Clusters are incrementally temporally
smoothed

(C) Cross-Time

(C1) Fixed Memberships, Fixed Properties

(C2) Fixed Memberships, Evolving Properties

(C3) Evolving Memberships, Fixed Properties

(C4) Evolving Memberships, Evolving Properties

Clusters at t depends on **both past and future** states of the network

Clusters are Completely temporally smoothed

(A) Instant Optimal

(A1) Iterative, Similarity Based

(A2) Iterative, Core-Node Based

(A3) Multi-Step Matching

Clusters at t depends only on the current state of the network

Clusters are non-temporally smoothed (Communities labels, however, can be

smoothed)

(B) Temporal Trade-Off

(B1) Update by Global Optimization

(B2) Informed CD by Multi-Objective Optimization

(B3) Update by Set of Rules

(B4) Informed CD by Network Smoothing

Clusters at t depends on current and past

states of the network

Clusters are incrementally temporally

smoothed

(C) Cross-Time

(C1) Fixed Memberships, Fixed Properties

(C2) Fixed Memberships, Evolving Properties

(C3) Evolving Memberships, Fixed Properties

(C4) Evolving Memberships, Evolving Properties

Clusters at t depends on **both past and future** states of the network

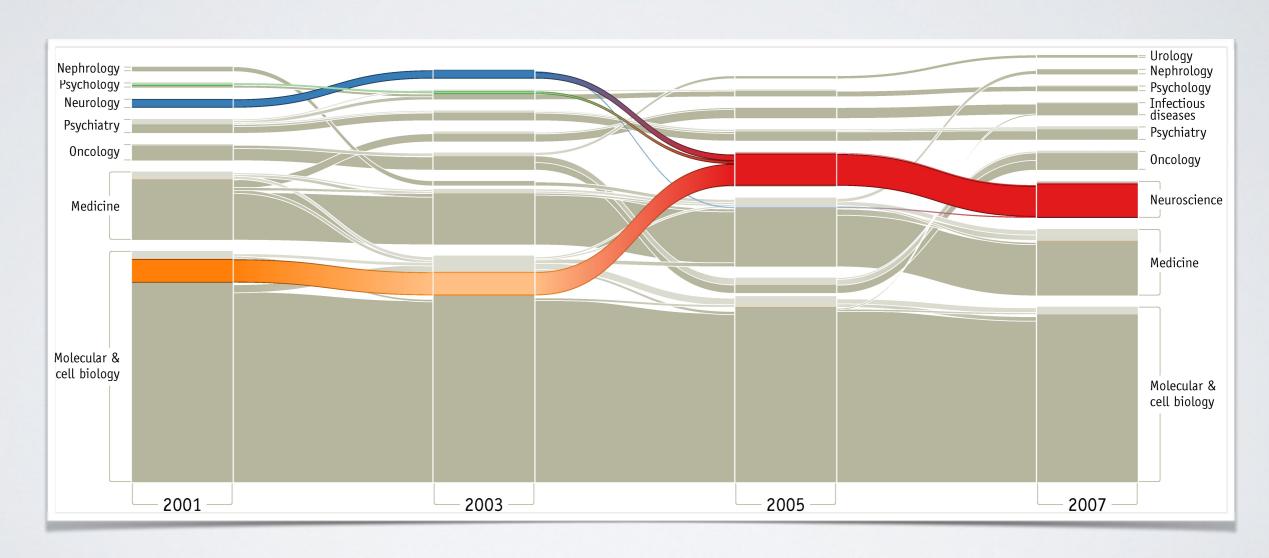
Clusters are Completely temporally smoothed

Snapshots/Temporal networks
SBM, Modularity, Conductance, ...
Overlapping YES/NO

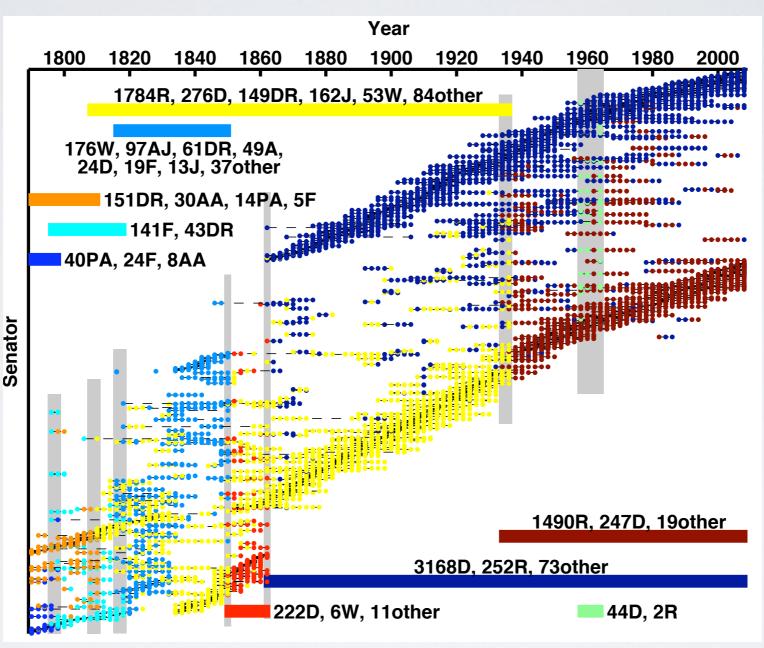
SCALABILITY

- Several types of complexity:
 - Snapshots approaches: Complexity for a snapshot x #snapshots + added cost (matching...)
 - Temporal networks: Complexity proportional to the number of modifications
- Can scale up to some limits:
 - Snapshots approaches: Hard part can be parallelized, but limit #snapshots
 - Temporal networks: cannot be parallelized, but can study fast dynamic at low cost

Some examples of applications



Rosvall et al. 2010



R : Républicains

D: Démocrates

Mucha et al. 2010

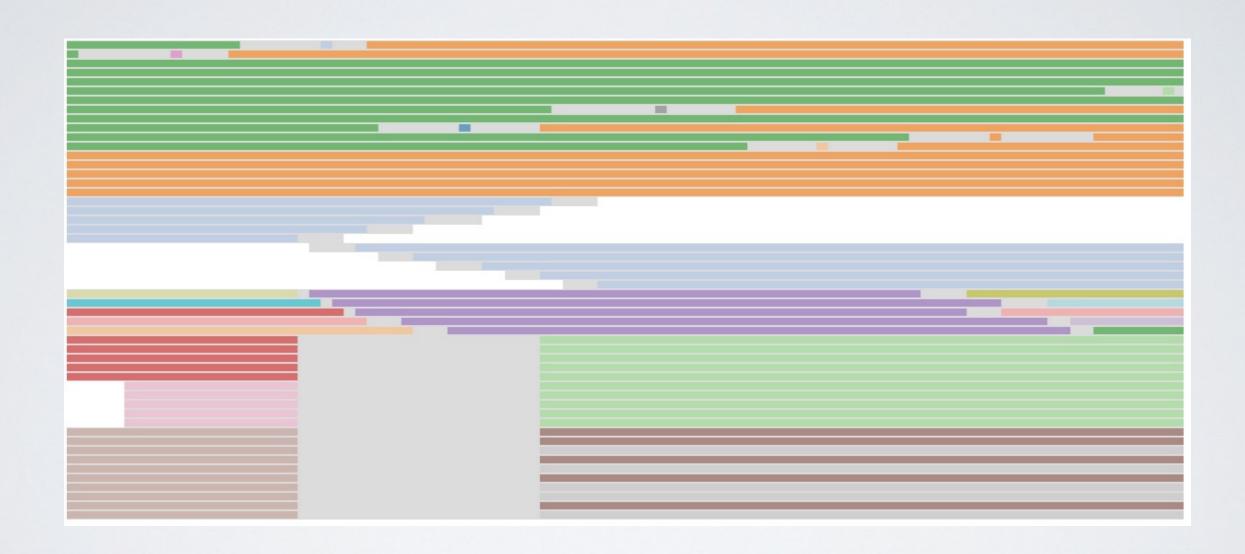


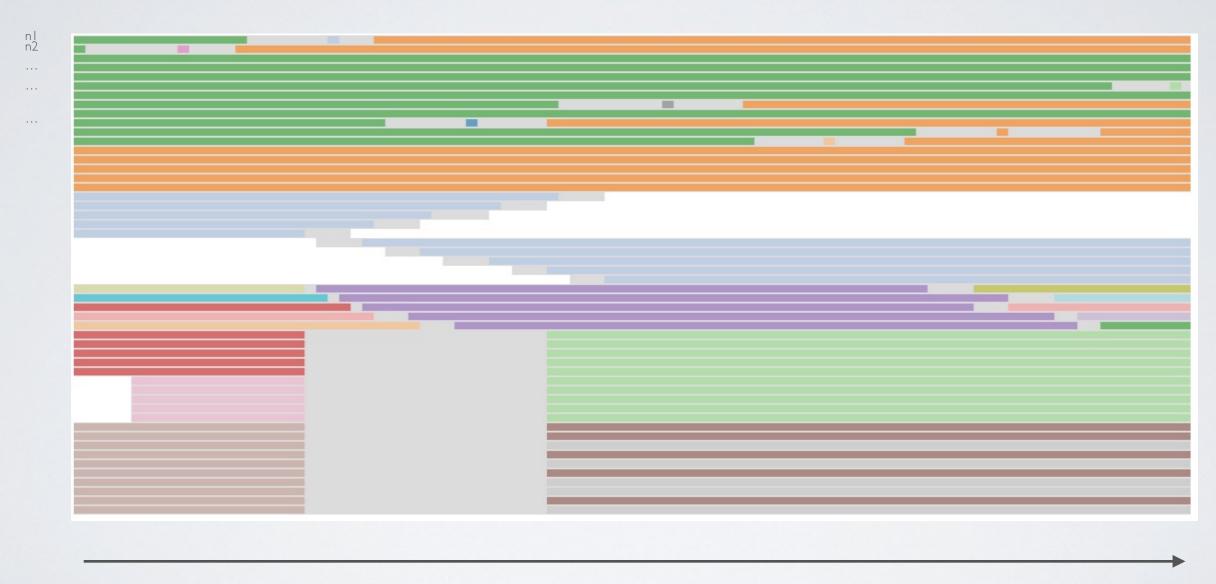
DCD IN PRACTICE

DCD IN PRACTICE

- Tests on synthetic networks
 - We know what we want to find
 - We run algorithms and check the results
- Tests on real networks
 - Start from a real dataset
 - Transform into an appropriate dynamic network (if needed)
 - Run algorithms and try to interpret results

- Using a dynamic network generator
- Testing several cases:
 - Continuation
 - Growth / Shrink
 - Merge
 - Division
 - Birth / Death
 - Theseus boat
 - Migration



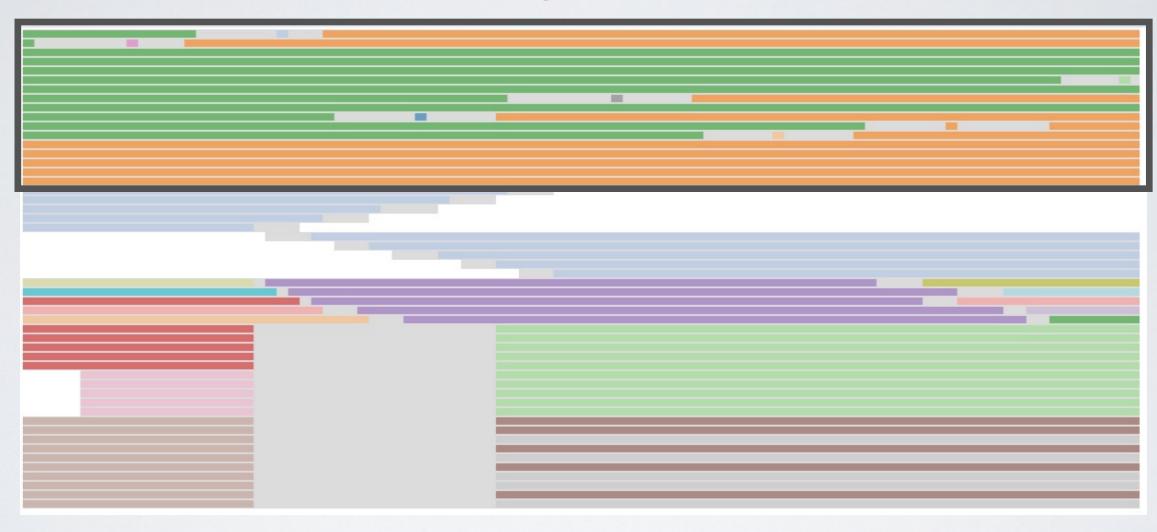


Time

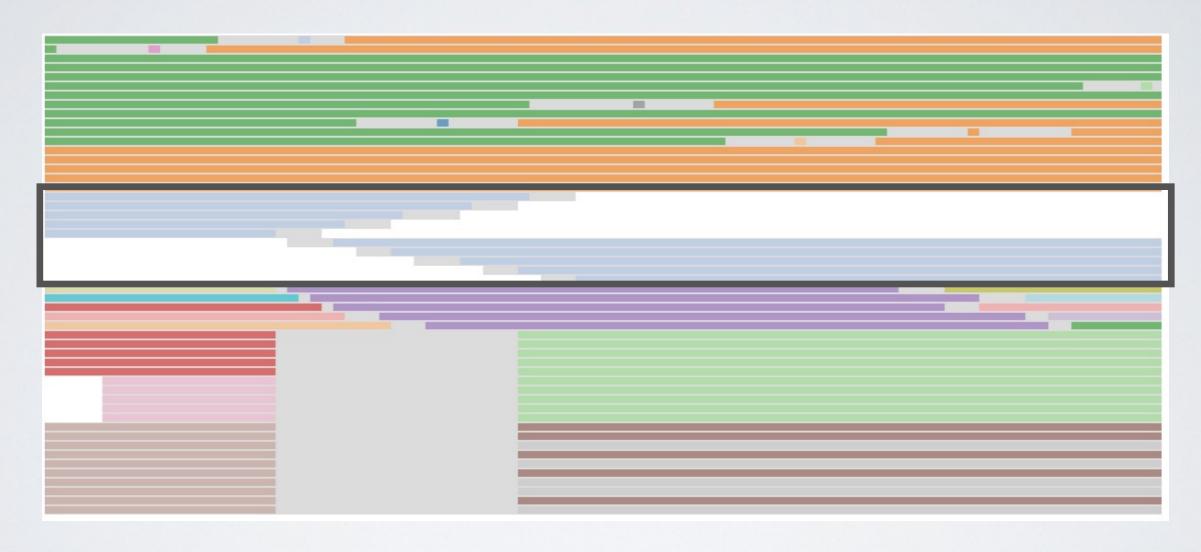
Node not present

Alive node, no known community

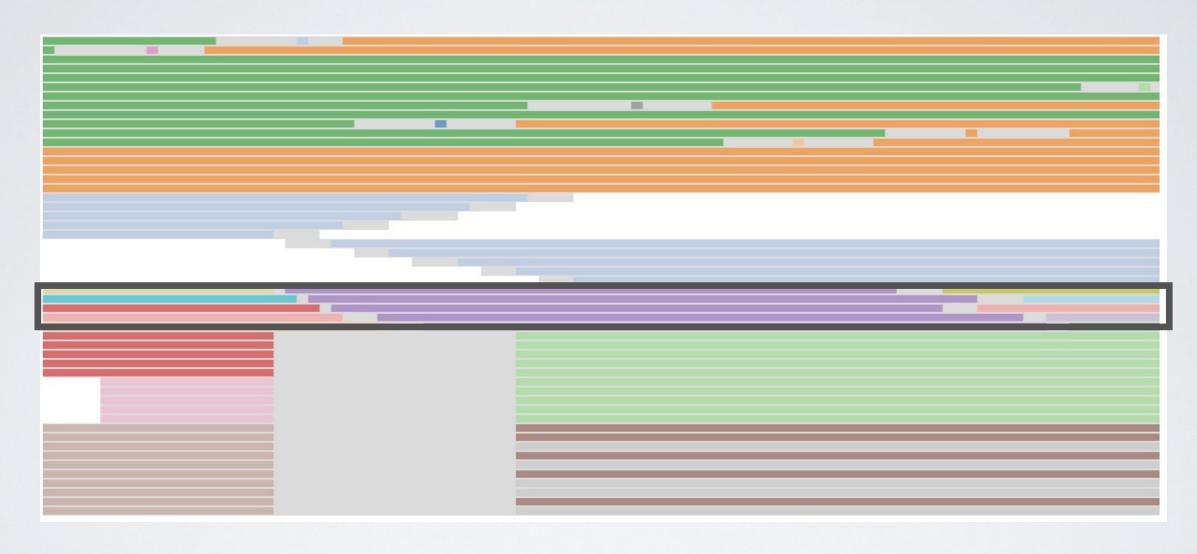
Migration



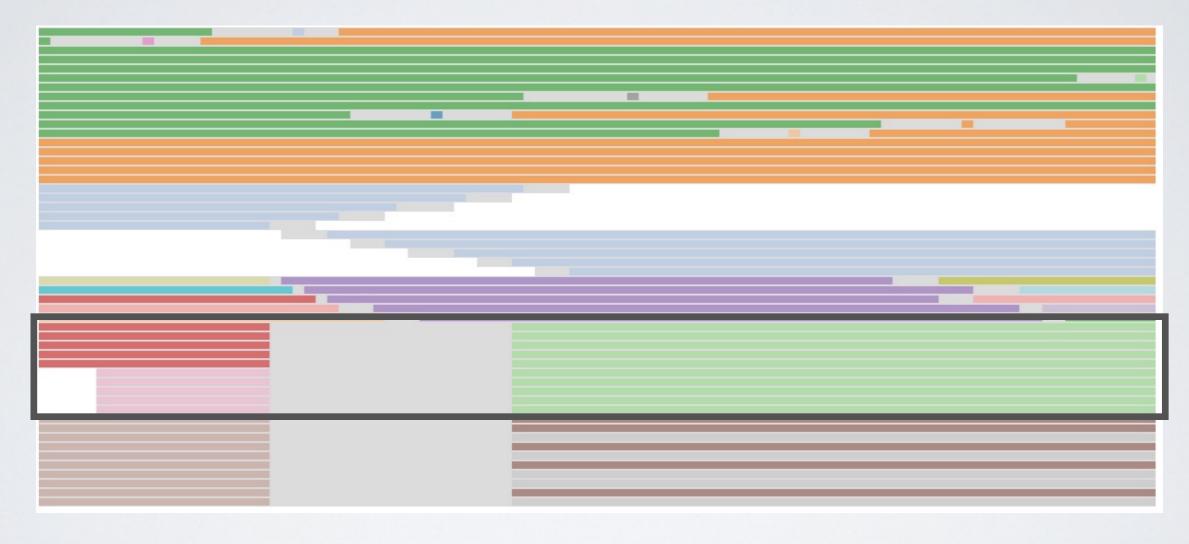
Theseus boat



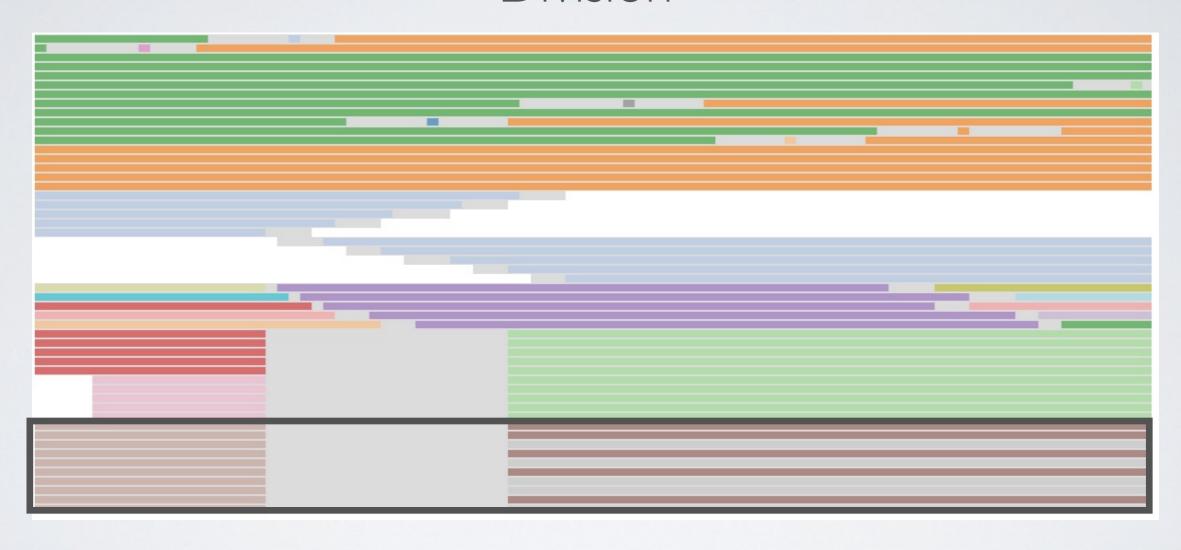
Birth and death



Merge



Division



Instant Optimal: Greene et al. 2011

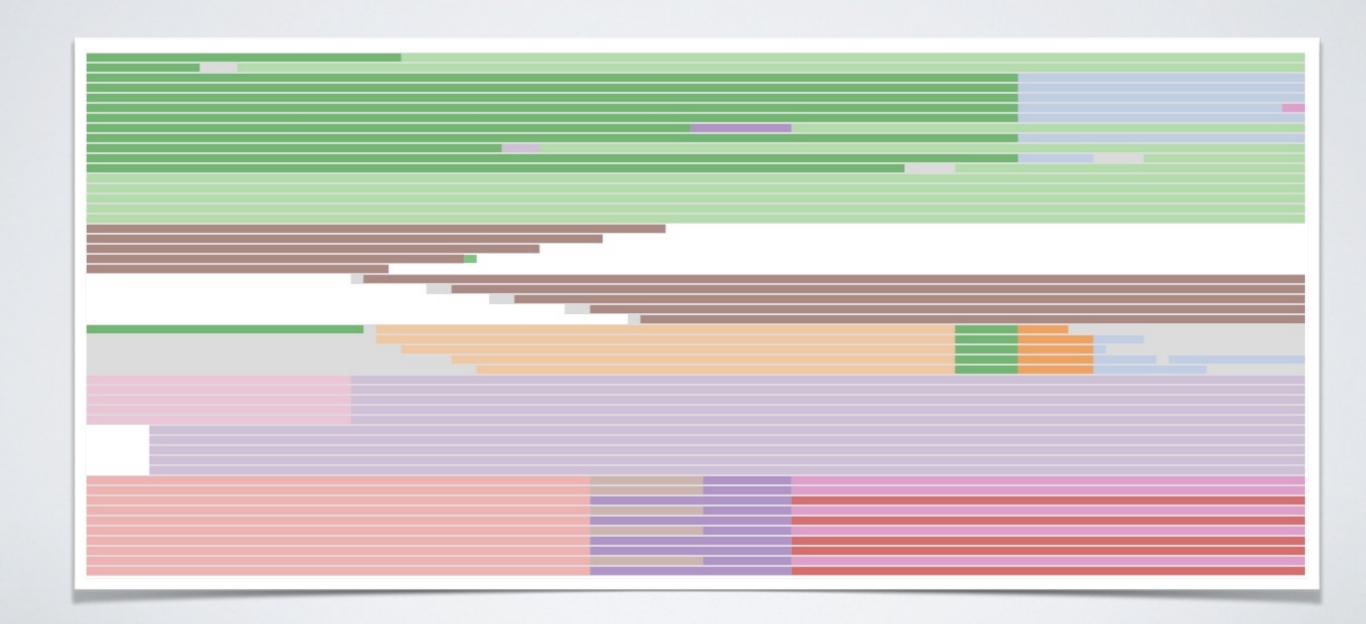
Temporal trade-off: Cazabet et al. 2010

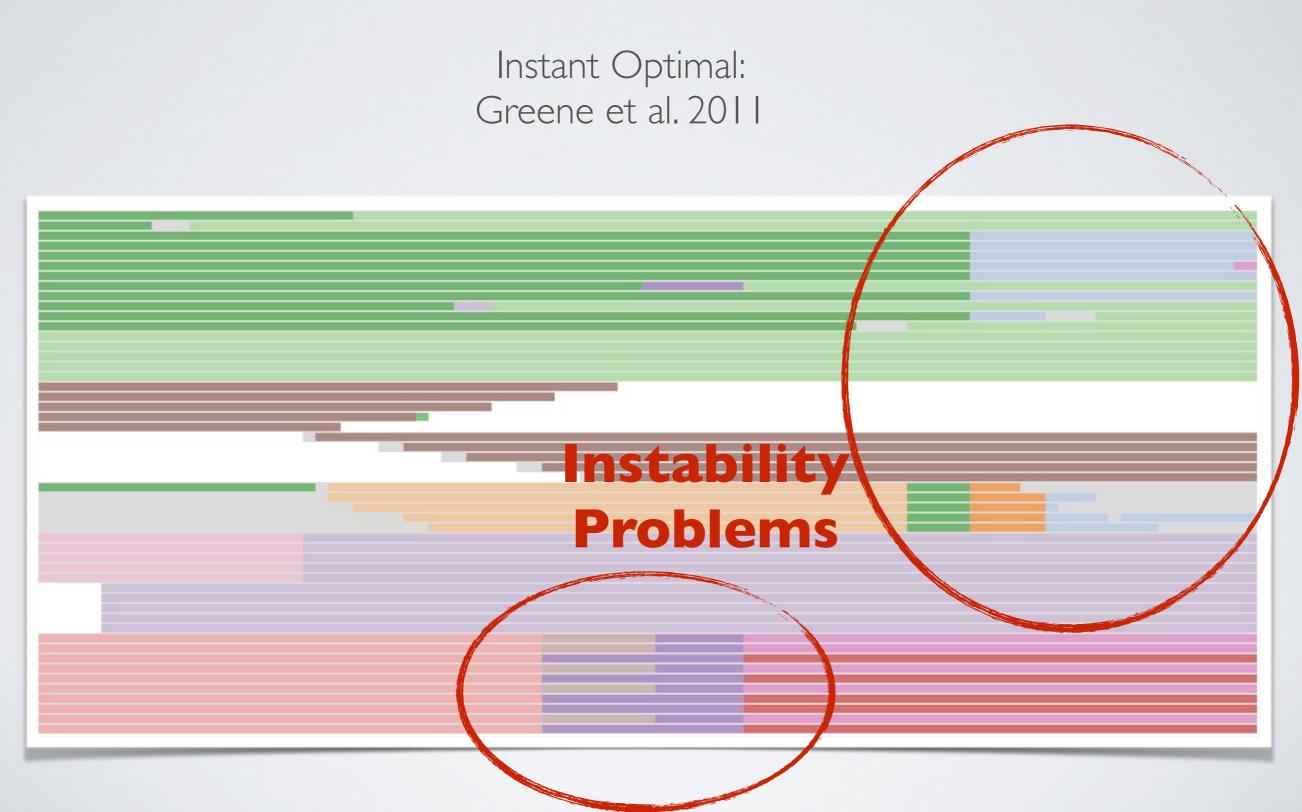
Cross-Time: Mucha et al. 2010

Instant Optimal: Greene et al. 2011

- Input: a graph series
- Algorithm:
 - · Detect communities on each snapshot using static algo
 - Compute Jaccard similarity between each pair of communities in successive graphs
 - Associate communities with similarity>Threshold

Instant Optimal: Greene et al. 2011

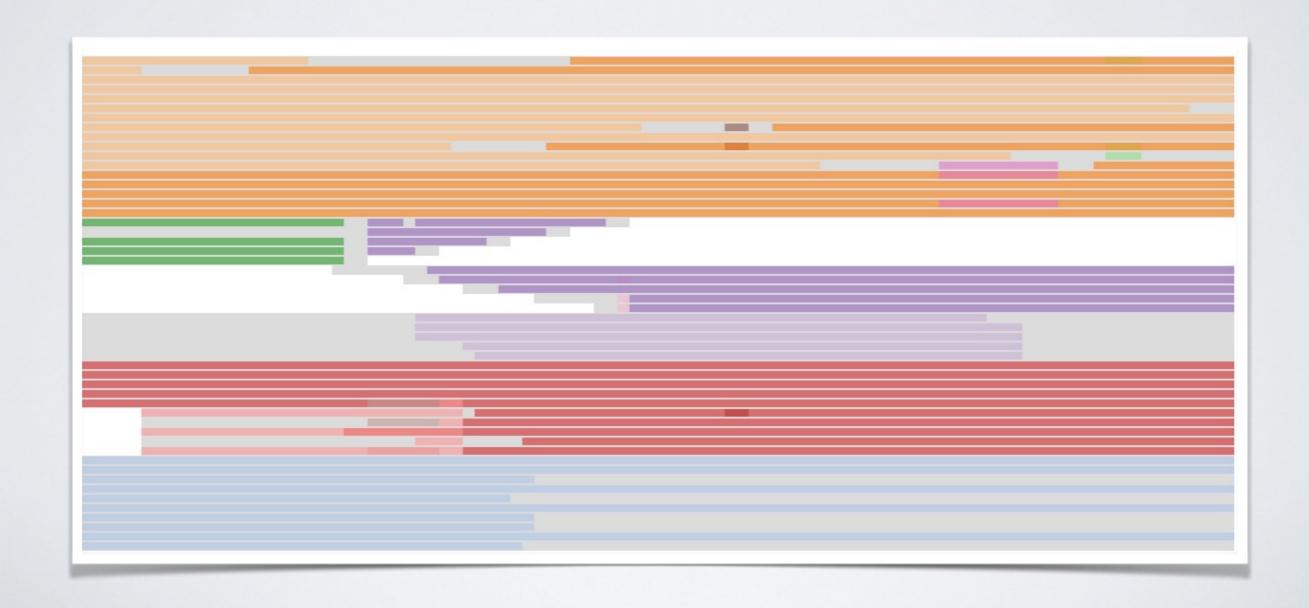




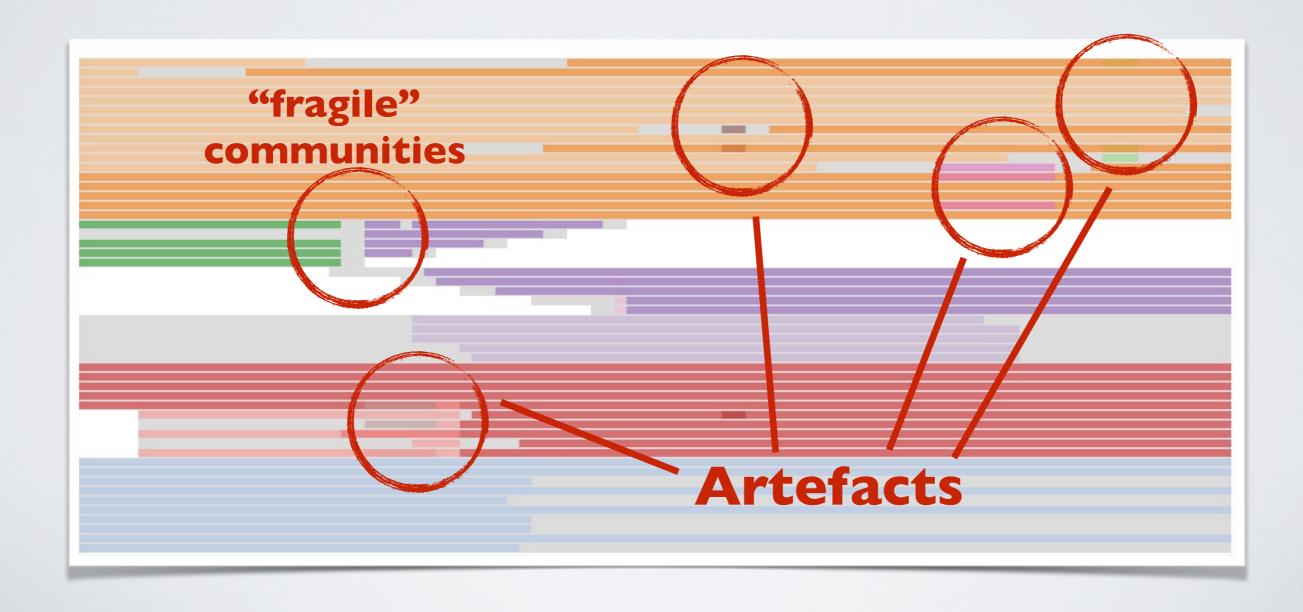
Temporal trade-off: Cazabet et al. 2010

- · Input: an ordered list of modifications
- Algorithm:
 - For each edge creation:
 - Decide locally to update involved communities (density>Threshold)
 - Decide locally to create a new community (new clique size>k outside communities)
 - For each edge deletion:
 - Decide locally to update involved communities (density < Threshold)
 - Decide locally to delete communities (nb nodes < k)

Temporal trade-off: Cazabet et al. 2010



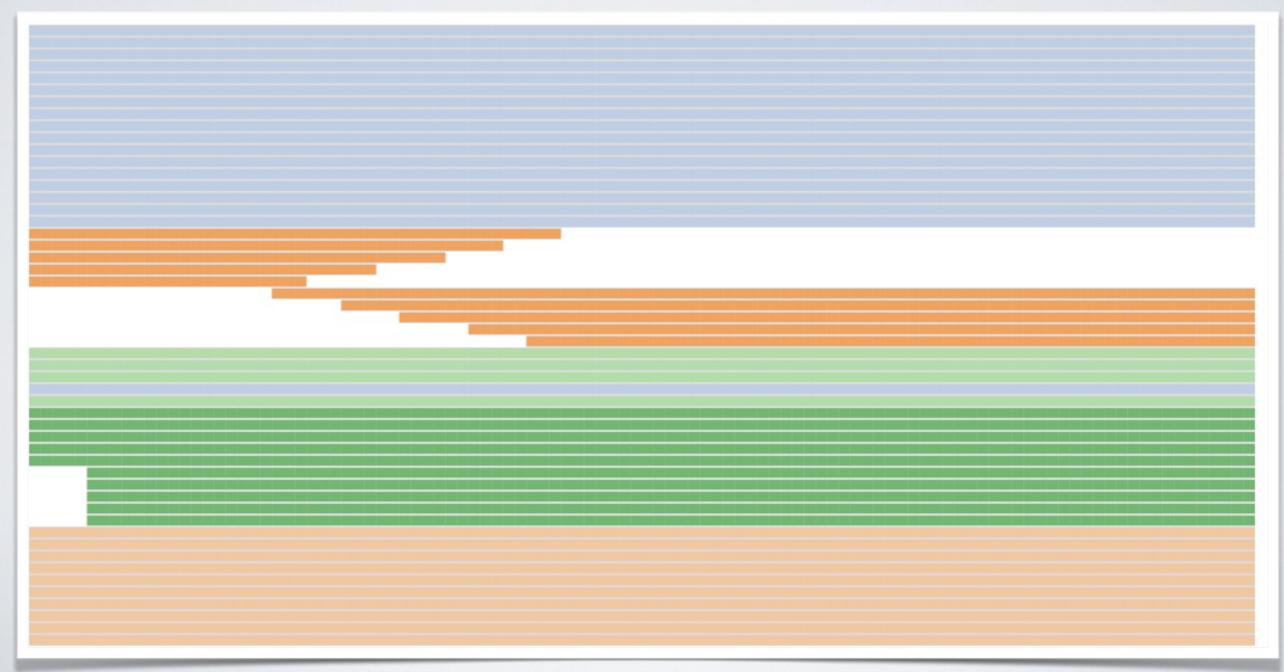
Temporal trade-off: Cazabet et al. 2010



Cross-Time: Mucha et al. 2010

- Input: a graph series
- Optimise a global quality function, with two parts:
 - A weighted average of the modularity at each snapshot
 - A metric of node stability (max when all nodes always in the same community)
- A parameter $\boldsymbol{\omega}$ allows to tune which aspect is more important

Cross-Time: Mucha et al. 2010



CONCLUSION

- Work in progress:
 - compare more methods
 - test on more datasets

GRAPH EMBEDDING FOR DYNAMIC COMMUNITY DETECTION

NETWORK EMBEDDING

- Have attracted a lot of attention in the last 3 years
- Deepwalk: 2014: 765 citations
- Node2vec: 2016: 536 citation
- Survey by Goyal/ferrara: end of 2017, 43 citations
- Methods using matrix factorization, random walks, deep learning...

IN CONCRETE TERMS

- A graph is composed of
 - Nodes (possibly with labels)
 - Edges (possibly directed, with labels)
- A graph embedding technique in **d** dimension will assign a vector of length **d** to each node, that will be useful for *what we want to do with the graph*.
- A vector can be assigned to an edge (u,v) by combining vectors of u and v using *your favorite operation*

WHY EMBEDDINGS?

- Machine Learning/Data mining/IA techniques => very popular and quite successful for supervised and unsupervised tasks.
- These techniques take as input vectors (and only vectors).
- Vectors must contain all relevant information and be as small as possible
- ==>Transform graphs into vectors (of low dimensions).
- Some methods are highly scalable, for instance based on skipgram

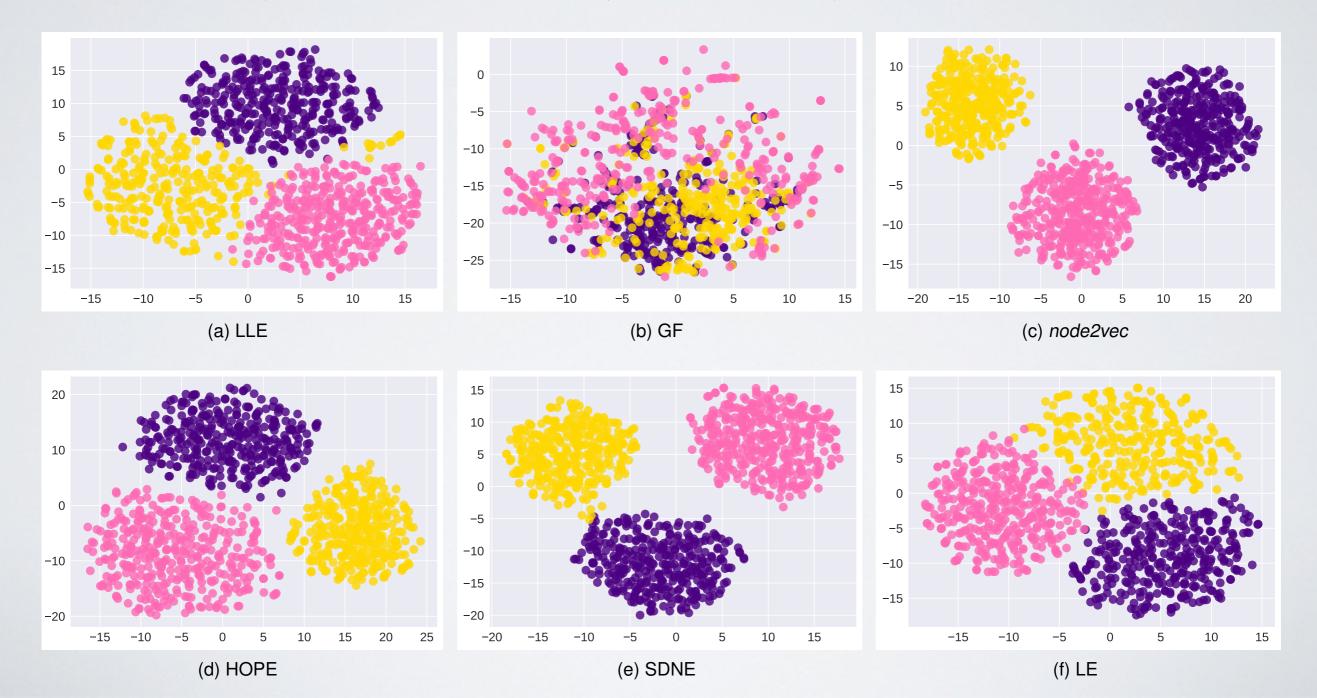
NAIVE EXEMPLE OF EMBEDDING

Optimize a cost function defined as: Distance in the graph- Distance in the embedding

COMMUNITY DETECTION USING EMBEDDINGS

VISUALLY

SBM, 3 communities, intern:0.1, extern 0.01



MAIN IDEA

- 1) Embed a graph
- 2) Use clustering method to find communities

• It is also possible to to "supervised" cluster detection, which corresponds to node classification (discover labels of nodes)

EMPIRICALLY

Real networks, try k-means++ with 2<=k<=50, Keep highest modularity

method	CoCit	CoAuthor	VK	YouTube	Orkut
FVERSE	70.12	80.95	44.59	-	
VERSE	69.43	79.25	45.78	67.63	42.64
DEEPWALK	70.04	73.83	43.30	58.08	44.66
LINE	60.02	71.58	39.65	63.40	42.59
GRAREP	67.61	77.40	_	_	<u>-</u>
HOPE	42.45	69.57	21.70	37.94	_
HSVERSE	69.81	79.31	45.84	69.13	_
Node2vec	70.06	75.78	44.27	_	_
Louvain	72.05	84.29	46.60	71.06	<u>-</u>

Table 12: Node clustering results in terms of modularity.

Argument: "more scalable than Louvain"

EMBEDDING DYNAMIC NETWORKS

OVERVIEW

- The embedding captures both
 - Structural similarity
 - Temporal similarity / temporal accessibility

STATE OF THE ART

- Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change (2016) (snapshot by snapshot)
- Scalable Temporal Latent Space Inference for Link Prediction in Dynamic Social Networks (2016)(smoothed snapshots)
- DynGEM: Deep Embedding Method for Dynamic Graphs (2018)(Deep auto encoder, incremental learning on snapshots
- Combining Temporal Aspects of Dynamic Networks with node2vec for a more Efficient Dynamic Link Prediction (To Be Published/2018) (node2vec using time-aware random walks)
- To be published: Marton Karsai et al.

THANKYOU