Data Science Laborator

Data Science Laboratory Federal University of Ceará

Fragment Extraction from *RDF* Schemas using *Keywords*

I'm Lucas Peres!

I'm a researcher at Insight Data Science Lab!

Graduated and **Master student** in Computer Science at Federal University of Ceará, working with *Information Retrieval* over ontology.

You can find me at @lucaspg96*

1. Introduction

- 2. Workflow
- **3**. Fragment Extraction
- 4. Experiments
- 5. Conclusions and Future

Works

1. Introduction

- Build queries over the ontology
- Retrieve relation of an element
- Search for keywords
 - o get triples with certain words
- Exploratory search
 - explore over the ontology

11

12

STATE OF THE ART

• (ELBASSUONI, 2011)

• Retrieve ontology *subgraphs* from a set of keywords

• (MUSETTI, 2012)

• Retrieve an entity from keywords and presents its more relevant relations

• (OUKSILI, 2017)

• Retrieve ontology *subgraphs* from a set of keywords using graph patterns

STATE OF THE ART

• (ELBASSUONI, 2011)

• Retrieve ontology *subgraphs* from a set of keywords

• (MUSETTI, 2012)

• Retrieve an entity from keywords and presents its more relevant relations

• (OUKSILI, 2017)

- Retrieve ontology *subgraphs* from a set of keywords using graph patterns
- Common Task: retrieve fragments from an ontology

66

How can we retrieve a **fragment** from the **ontology** using **keywords**?

77

2. Workflow

17 OUR APPROACH

- Work only with the schema
 - the data may not fit in memory
 - no previous knowledge about the domain

18 OUR APPROACH

- Work only with the schema
 - o the data may not fit in memory
 - no previous knowledge about the domain
- Use solution to graph problems
 - Since the ontology can be represented as a graph, we can map the fragment extraction to a graph problem

Solution

Ontology

"award file of nobel prize category"

3. Fragment Extraction

• Matcher

30

COMPONENTS

- Identify, from the keywords, the classes and properties known by the ontology
- Generate triples representing the classes and properties identified

• Matcher

COMPONENTS

- Identify, from the keywords, the classes and properties known by the ontology
- Generate triples representing the classes and properties identified

• Fragment Constructor

- Build a graph from triples, representing an initial fragment
- Identify which properties are reachable from the fragment

MATCHER

- Algorithm *Keyword Matcher*
 - Identify *keywords* inside the search
 - Iterate over the *keywords* in sequence
 - Retrieve the ontology terms (classes and properties) most similars:
 - Jaro-Winkler(WINKLER, 1999) similarity
 - Synonyms map (optional)
 - Some keywords can be composed (multiple tokens):
 - Algorithm *Permuted Jaro-Winkler*
 - Return triples

MATCHER

Permuted Jaro-Winkler

- Calculate the similarity among the tokens
- Pair the most similars
- Calculate the mean similarity among then
- Example: nobel file prize x prize nobel file
 - o Jaro-Winkler. 72%
 - Permuted Jaro-Winkler. 100%

FRAGMENT CONSTRUCTOR

- Algorithm *Fragment Constructor* (SAHA, 2016)
 - Generates the graph from the triples retrieved by *Keyword Matcher*
 - If the graph is disconnected:
 - calculate the *Steiner Tree* from the graph over the ontology
 - apply *Dijkstra* shortest path algorithm to generate compressed edges between two classes
 - calculate the Minimum Spanning Tree with Prim's algorithm
 - uncompress the edges
 - Update the graph with all classes properties
 - Return the graph as a fragment

4. Experiments

36

EXPERIMENTS

- We used two different ontologies:
 - Nobel Prizes (datahub.io)
 - o LinkedBrainz
- Gold Standard
 - We proposed, from the ontologies, and the minimum fragments that must be returned
 - The accuracy is represented by the *gold standard* contingency inside the fragment

• To each search we ran 100 executions at the following scenarios:

SCENARIO	DESCRIPTION
C1	Search tokens randomly permuted
C2	Search tokens' characters randomly replaced
C3	Union of C1 and C2
C4	Search tokens randomly replaced by synonyms
C5	Union of C1 and C4

• Nobel Prize

SEARCH	C1	C2	С3	C4	C5
prize file from nobel prize laureate	93%	98.5%	88.5%	100%	82%
field of laureate award from laureate	85%	98%	66%	100%	65%
award file and prize file from laureate	61.75%	84.5%	52.25%	100%	56.5%

• Nobel Prize

SEARCH	C1	C2	С3	C4	C5
prize file from nobel prize laureate	93%	98.5%	88.5%	100%	82%
field of laureate award from laureate	85%	98%	66%	100%	65%
award file and prize file from laureate	61.75%	84.5%	52.25%	100%	56.5%

• LinkedBrainz

SEARCH	C1	C2	С3	C4	C5
musicArtist records	100%	85.5%	87%	100%	87%
track release	100%	86%	84%	100%	91%
musicalWork from musicArtists	100%	83%	85.5%	100%	87.5%

• LinkedBrainz

SEARCH	C1	C2	С3	C4	C5
musicArtist records	100%	85.5%	87%	100%	87%
track release	100%	86%	84%	100%	91%
musicalWork from musicArtists	100%	83%	85.5%	100%	87.5%

42

• LinkedBrainz

SEARCH	C1	C2	С3	C4	C5
musicArtist records	100%	85.5%	87%	100%	87%
track release	100%	86%	84%	100%	91%
musicalWork from musicArtists	100%	83%	85.5%	100%	87.5%

• Nobel Prize

SEARCH	C1	C2	C3	C4	C5
prize file from nobel prize laureate	93%	98.5%	88.5%	100%	82%
field of laureate award from laureate	85%	98%	66%	100%	65%
award file and prize file from laureate	61.75%	84.5%	52.25%	100%	56.5%

43

• LinkedBrainz

SEARCH	C1	C2	С3	C4	C5
musicArtist records	100%	85.5%	87%	100%	87%
track release	100%	86%	84%	100%	91%
musicalWork from musicArtists	100%	83%	85.5%	100%	87.5%

• Nobel Prize

SEARCH	C1	C2	C3	C4	C5
prize file from nobel prize laureate	93%	98.5%	88.5%	100%	82%
field of l aureate award from laureate	85%	98%	66%	100%	65%
award file and prize file from laureate	61.75%	84.5%	52.25%	100%	56.5%

5. Conclusions and Future Works

45 CONCLUSIONS

- Some tokens permutations can imply in a smaller accuracy
- Work only with the schema allowed use a generic approach
- Graph algorithms proved effective to retrieve the fragments

FUTURE WORKS

46

- Perform more experiments with larger ontologies
- Try different approaches to identify the terms inside *Matcher*
- Identify most important properties to use in fragment construction
- Use the fragment in some *Information Retrieval* scenarios

Thank you!

Questions?

You can find me at

- ▷ @lucaspg96
- Iucasperes@lia.ufc.br

48 REFERENCES

- **Elbassuoni**, Shady, and Roi Blanco. "Keyword search over RDF graphs." Proceedings of the 20th ACM international conference on Information and knowledge management. ACM, 2011.
- **Musetti**, Alberto, et al. "Aemoo: Exploratory search based on knowledge patterns over the semantic web." Semantic Web Challenge 136 (2012).
- **Ouksili**, Hanane, et al. "Using Patterns for Keyword Search in RDF Graphs." EDBT/ICDT Workshops. 2017.
- **Saha**, Diptikalyan, et al. "Athena: An ontology-driven system for natural language querying over relational data stores." Proceedings of the VLDB Endowment 9.12 (2016): 1209-1220.
- **Winkler**, William E. "The state of record linkage and current research problems." Statistical Research Division, US Census Bureau. 1999.